254 research outputs found

    Technological requirements for solutions in the conservation and protection of historic monuments and archaeological remains

    Get PDF
    Executive summary: This Study has discovered many achievements associated with European support for scientific and technological research for the protection and conservation of cultural heritage. The achievements to date are: 1. Creation of an active research community 2. A body of research of unparalleled and enviable international quality and character 3. Ongoing effectiveness of research beyond initial funding 4. Substantial rate of publication 5. Imaginative tools of dissemination and publication 6. Clear spin-offs and contribution to European competitiveness often going outside the European cultural heritage area 7. Contribution to emerging European legislation, for example, air quality management. The Study has also uncovered important research gaps associated with this field that have yet to begin to be investigated. It has also discovered the need for continuing fine scale advancement in areas where researchers have been active for a number of years. The overall picture is that European research in the field of cultural heritage protection must be put on a secure footing if it is to maintain its commanding lead over other regions of the world. This Study concludes that: 1. It would be invidious to attempt to separate basic and applied research in this area of research. Like any other scientific endeavour, this field needs to integrate basic and applied research if it is to continue to thrive. 2. Small, flexible, focused interdisciplinary teams responsive to European needs, must be sustained, promoted and celebrated as models of sustainability and that what is proposed under the European Research Area (ERA) for large and complex research projects, could inflict serious damage on this area of research. 3. Resources cannot be delegated to Member States because of the interdisciplinary nature of cultural heritage and the need for a co-ordinated pan-European perspective across this research that helps to define the essential character of European cultural heritage. National programmes only serve local needs, leading to loss of strategic output, lessening of competitiveness and risk of duplication. 4. A mechanism needs to be created to help researchers working in this field to communicate and exchange information with related sectors such as construction, urban regeneration, land reclamation and agriculture. 5. There is overwhelming agreement over the need for sustainable research funding for cultural heritage and for an iterative process of exchange among researchers, decision-makers and end-users in order to maximize benefits from project inception through to dissemination, audit and review. For all the reasons mentioned above, the most significant recommendation in this Report is the identification of the need for a European Panel on the Application of Science for Cultural Heritage (EPASCH)

    Biodeterioration of Roman tombs: The role of pigmented actinobacteria

    Get PDF
    Etruscan and Roman necropolises are cemeteries with different types of burial practices, which are remarkable for their magnificent mural paintings. The conservation of these paintings is difficult, mainly derived from environmental factors and the opening of the tombs to public visits. One of the most complex phenomena observed on these sites is biodeterioration. The Circular Mausoleum tomb (Roman Necropolis of Carmona, Seville, Spain) is characterized by a heavy colonization of phototrophic microorganisms on the walls and ceiling. In addition, some areas near the ceiling exhibited an important number of violet stains of unknown origin. Previously, Agarossi (1994) found similar violet stains, attributed to streptomycetes, in two Etruscan tombs. However, no data on the species involved or the chemical structure of the pigments were reported. Here we show that the violet stains observed in the Circular Mausoleum are produced by a strain of the actinobacterium Streptomyces isolated from the mortar walls, and able to synthesize the same violet pigment in the laboratory. Streptomyces parvus MC05 was identified after whole genome study by means of Next Generation Sequencing methods. Pairwise comparisons carried out for genomes of the type strain of S. parvus DSM40348T and the MC05 strain were performed using Jspecies service. While results observed for ANIb, ANIm and Tetra indexes indicated that both strains belong to the same species, the S. parvus MC05 strain differs from the DSM20348T type strain in genome size and secondary metabolites production. AntiSMASH analysis implemented for both strains showed that the S. parvus MC05, isolated from the tomb, presents the capacity of synthesize bioactive compounds which were absents in the type strain. HPLC-MS of the culture extracts from S. parvus MC05 showed the production of three main granaticin derivatives (dihydrogranaticin A, granaticin A and granaticin B) in addition to minor products of other granaticin analogues. Granaticin pigments exhibited antibacterial activity, which justified the low number of clones of Gram positive bacteria found in the whole microbial community study. Gram negative bacteria were not affected (Dominguez-Moñino et al. 2017). To conclude, the origin of the violet stains in the walls of the Circular Mausoleum is the presence of S. parvus MC05, a member of the complex microbial community thriving on the tomb. In growing periods (rainy season) the bacterium excretes the soluble violet granaticins, compounds with a benzoisochromanequinone structure, which diffuses to the mortar and surrounding substrata in wetting periods

    Actinobacteria isolated from subterranean and cultural heritage: implications for biotechnology

    Get PDF
    Due to their extraordinary properties, Actinobacteria can thrive in extreme environments, such as limestone caves, lava tubes and stone monuments. They grow forming microbial mats and speleothems on the walls and ceilings of caves, ranging from extensive coatings to small colonies (Riquelme et al. 2015). Their colour includes yellow, tan, orange, grey, pink and white. Recently, we have found abundant yellow and white-coloured bacterial mats coating the cave walls and secondary mineral deposits (speleothems) of lava tubes from La Palma Island, Canary Islands, Spain (Gonzalez-Pimentel et al. 2018) and Mount Etna in Catania (Sicily, Italy). Field Emission Scanning Electron Microscopy (FESEM) of the coloured microbial mats revealed abundant Actinobacteria-like cells, including a variety of filaments and spore structures with smooth surface ornamentation or profuse surface appendages. The DNA-/RNA-based analyses confirmed that these microbial mats are mainly composed of metabolically active Actinobacteria (Gonzalez-Pimentel et al. 2018). It is well known that Actinobacteria, mainly isolated from marine and soil ecosystems, are an important source of bioactive compounds, with Streptomyces ranking first with a huge number of bioactive secondary metabolites (Guo et al. 2015). These compounds, not only produced by Streptomyces but also by Bacillus, are very important to the industrial sector, such as pharmacology, biofuel and food industries, as well as to the conservation of stone cultural heritage, due to their antimicrobial properties (Silva et al. 2017). In the last decades, these sectors have intensified demands for exploring novel eco-friendly bioactive compounds, which stresses the need to investigate new groups of Actinobacteria from underexplored habitats. Yet, Actinobacteria from caves have not been the target of intensive screening for bioactive secondary metabolites. Hence, Actinobacterial-like microbial mats were collected and isolated from lava tubes in La Palma and Mount Etna to investigate their biotechnological potential. The screening of antimicrobial activity was based both on culture-dependent techniques using the agar diffusion assay and on metagenomics. Our study has showed that the strain Streptomyces sp. MZ0467C isolated from La Palma lava tube has antimicrobial activity against Microbacterium, Rhodococcus, Arthrobacter, Kocuria, Sphingomonas and Paenibacillus due to its ingenious adaptations and metabolic strategies to survive under extreme environmental conditions. This demonstrates that Actinobacteria from subterranean environments are promising sources of antibacterial compounds with interest for cultural heritage conservation

    Morpho-Mineralogical and Bio-Geochemical Description of Cave Manganese Stromatolite-Like Patinas (Grotta del Cervo, Central Italy) and Hints on Their Paleohydrological-Driven Genesis

    Get PDF
    Caves are dark subsurface environments with relatively constant temperatures that allow studying bio-mineralization processes and paleoenvironmental or climate changes in optimal conditions. In the extreme and oligotrophic cave environment, manganese patinas having stromatolite-like features are uncommon. Here we provide the first detailed mineralogical, geochemical, and microbiological investigation of fine-grained and poorly crystalline MnFe stromatolite-like wall patinas formed in a deep-cave environment in Italy. These mineralizations, about 3 mm thick, consist of an alternation of Mn-layers and Fe-lenses. We show that the microbial communities' composition is dominated by Mn-oxidizing bacteria, such as Bacillus, Flavobacterium, and Pseudomonas. Our multidisciplinary investigation, integrating data from different analytical techniques (i.e., optical microscopy, SEM-EDS, μXRF, XRPD, FT-IR, Raman spectroscopy, and DNA sequencing), revealed peculiar chemical, mineralogical, and biological features: 1) A cyclical oscillation of Mn and Fe along the growth of the patinas. We propose that this oscillation represents the shift between oxic and suboxic conditions related to different phases occurring during paleo-flood events; 2) A typical spatial distribution of mineralogy and oxidation state of Mn, bacterial imprints, detrital content, and stromatolite-like morphologies along the Mn-layers. We propose that this distribution is controlled by the local hydraulic regime of the paleo-floods, which, in turn, is directly related to the morphology of the wall surface. Under less turbulent conditions, the combination of clay mineral catalysis and biological oxidation produced vernadite, a poor-crystalline phyllomanganate with a low average oxidation state of Mn, and branched columnar stromatolite-like morphologies. On the other hand, under more turbulent conditions, the sedimentation of clay minerals and microbial communities' development are both inhibited. In this local environment, a lower oxidation rate of Mn2+ favored the formation of todorokite and/or ranciéite, two compounds with a high average oxidation state of Mn, and flat-laminated or columnar stromatolite-like morphologies

    Manganese oxides as biominerals in a granitic subterranean environment

    Get PDF
    Black coatings were detected on granite surfaces in groundwater catch work tunnels from Porto city (NW Portugal). XRD, FTIR, Micro-Raman, ICP-MS, TEM-EDS, SEM-EDS and SEM-FIB were the analytical procedures carried out to investigate the origin of the black coatings. In this subterranean environment, the enrichment in metals and other trace elements, such as Mn and Fe, and clay minerals characterize the black microbial mats, mainly composed of Mn/Fe-oxidising bacteria.Fundação para a Ciência e a Tecnologia (FCT

    Microbial Community Characterizing Vermiculations from Karst Caves and Its Role in Their Formation

    Get PDF
    The microbiota associated with vermiculations from karst caves is largely unknown. Vermiculations are enigmatic deposits forming worm-like patterns on cave walls all over the world. They represent a precious focus for geomicrobiological studies aimed at exploring both the microbial life of these ecosystems and the vermiculation genesis. This study comprises the first approach on the microbial communities thriving in Pertosa-Auletta Cave (southern Italy) vermiculations by next-generation sequencing. The most abundant phylum in vermiculations was Proteobacteria, followed by Acidobacteria > Actinobacteria > Nitrospirae > Firmicutes > Planctomycetes > Chloroflexi > Gemmatimonadetes > Bacteroidetes > Latescibacteria. Numerous less-represented taxonomic groups (< 1%), as well as unclassified ones, were also detected. From an ecological point of view, all the groups co-participate in the biogeochemical cycles in these underground environments, mediating oxidation-reduction reactions, promoting host rock dissolution and secondary mineral precipitation, and enriching the matrix in organic matter. Confocal laser scanning microscopy and field emission scanning electron microscopy brought evidence of a strong interaction between the biotic community and the abiotic matrix, supporting the role of microbial communities in the formation process of vermiculations

    Geomicrobiology of a seawater-influenced active sulfuric acid cave.

    Get PDF
    Fetida Cave is an active sulfuric acid cave influenced by seawater, showing abundant microbial communities that organize themselves under three main different morphologies: water filaments, vermiculations and moonmilk deposits. These biofilms/deposits have different cave distribution, pH, macro- and microelement and mineralogical composition, carbon and nitrogen content. In particular, water filaments and vermiculations had circumneutral and slightly acidic pH, respectively, both had abundant organic carbon and high microbial diversity. They were rich in macro- and microelements, deriving from mineral dissolution, and, in the case of water filaments, from seawater composition. Vermiculations had different color, partly associated with their mineralogy, and unusual minerals probably due to trapping capacities. Moonmilk was composed of gypsum, poor in organic matter, had an extremely low pH (0\u20131) and low microbial diversity. Based on 16S rRNA gene analysis, the microbial composition of the biofilms/deposits included autotrophic taxa associated with sulfur and nitrogen cycles and biomineralization processes. In particular, water filaments communities were characterized by bacterial taxa involved in sulfur oxidation and reduction in aquatic, aphotic, microaerophilic/anoxic environments (Campylobacterales, Thiotrichales, Arenicellales, Desulfobacterales, Desulforomonadales) and in chemolithotrophy in marine habitats (Oceanospirillales, Chromatiales). Their biodiversity was linked to the morphology of the water filaments and their collection site. Microbial communities within vermiculations were partly related to their color and showed high abundance of unclassified Betaproteobacteria and sulfur-oxidizing Hydrogenophilales (including Sulfuriferula), and Acidiferrobacterales (including Sulfurifustis), sulfur-reducing Desulfurellales, and ammonia-oxidizing Planctomycetes and Nitrospirae. The microbial community associated with gypsum moonmilk showed the strong dominance (>60%) of the archaeal genus Thermoplasma and lower abundance of chemolithotrophic Acidithiobacillus, metal-oxidizing Metallibacterium, Sulfobacillus, and Acidibacillus. This study describes the geomicrobiology of water filaments, vermiculations and gypsum moonmilk from Fetida Cave, providing insights into the microbial taxa that characterize each morphology and contribute to biogeochemical cycles and speleogenesis of this peculiar seawater-influenced sulfuric acid cave

    BDNF and NGF Signalling in Early Phases of Psychosis: Relationship with Inflammation and Response to Antipsychotics after 1 Year

    Get PDF
    Previous studies have indicated systemic deregulation of the proinflammatory or anti-inflammatory balance in individuals with first-episode psychosis (FEP) that persists 12 months later. To identify potential risk/protective factors and associations with symptom severity, we assessed possible changes in plasma levels of neurotrophins (brain-derived neurotrophic factor BDNF] and nerve growth factor NGF]) and their receptors in peripheral blood mononuclear cells (PBMCs). Expression of the 2 forms of BDNF receptors (active TrkB-FL and inactiveTrkB-T1) in PBMCs of FEP patients changed over time, TrkB-FL expression increasing by 1 year after diagnosis, while TrkB-T1 expression decreased. The TrkB-FL/TrkB-T1 ratio (hereafter FL/T1 ratio) increased during follow-up in the nonaffective psychosis group only, suggesting different underlying pathophysiological mechanisms in subgroups of FEP patients. Further, the expression of the main NGF receptor, TrkA, generally increased in patients at follow-up. After adjusting for potential confounders, baseline levels of inducible isoforms of nitric oxide synthase, cyclooxygenase, and nuclear transcription factor were significantly associated with the FL/T1 ratio, suggesting that more inflammation is associated with higher values of this ratio. Interestingly, the FL/T1 ratio might have a role as a predictor of functioning, a regression model of functioning at 1 year suggesting that the effect of the FL/T1 ratio at baseline on functioning at 1 year depended on whether patients were treated with antipsychotics. These findings may have translational relevance; specifically, it might be useful to assess the expression of TrkB receptor isoforms before initiating antipsychotic treatment in FEPs

    Evolution of metabolic risk factors over a two-year period in a cohort of first episodes of psychosis

    Get PDF
    Patients with a first episode of psychosis (FEP) display a broad range of metabolic risk factors related to the development of diverse medical comorbidities. Initial stages of these disorders are essential in understanding the increased vulnerability of developing cardiometabolic disturbances, associated with a reduced life expectancy. This study aimed to evaluate the metabolic profile of a cohort of patients with a FEP and its evolution during a two year follow-up, as well as the factors that influence the changes in their metabolic status. 16 participating centers from the PEPs Project recruited 335 subjects with a FEP and 253 matched healthy controls, aged 9–35 years. We investigated a set of anthropometric measures, vital signs and laboratory data obtained from each participant over two years in a prospective, naturalistic study. From the beginning of the study the FEP group showed differences in the metabolic profile compared to the control group, together with a progressive worsening in the major part of the analyzed variables during the follow-up period, with higher rates of obesity and metabolic syndrome. Certain risk factors were related to determinate clinical variables such as male gender, the presence of affective symptoms or an early onset or to treatment variables such as the use of antipsychotic polypharmacy, antidepressants or mood stabilizers. Our results highlight the extremely high risk of patients at early phases of schizophrenia and other psychotic disorders of developing cardiovascular comorbidity and the fast worsening of the metabolic profile during the first two years

    Laboratory-induced endolithic growth in calcarenites: biodeteriorating potential assessment

    Get PDF
    This study is aimed to assess the formation of photosynthetic biofilms on and within different natural stone materials, and to analyse their biogeophysical and biogeochemical deterioration potential. This was performed by means of artificial colonisation under laboratory conditions during 3 months. Monitoring of microbial development was performed by image analysis and biofilm biomass estimation by chlorophyll extraction technique. Microscopy investigations were carried out to study relationships between microorganisms and the mineral substrata. The model applied in this work corroborated a successful survival strategy inside endolithic microhabitat, using natural phototrophic biofilm cultivation, composed by cyanobacteria and algae, which increased intrinsic porosity by active mineral dissolution. We observed the presence of mineral-like iron derivatives (e.g. maghemite) around the cells and intracellularly and the precipitation of hausmannite, suggesting manganese transformations related to the biomineralisation.Fundação para a Ciência e a Tecnologia (FCT
    • …
    corecore